William Holderbaum: Energy Forecasting and Control Methods for Energy Storage Systems in Distribution Networks
Energy Forecasting and Control Methods for Energy Storage Systems in Distribution Networks
Buch
- Predictive Modelling and Control Techniques
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 175,23*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer International Publishing, 01/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783030828509
- Bestellnummer: 11730818
- Umfang: 220 Seiten
- Nummer der Auflage: 24001
- Auflage: 1st ed. 2023
- Gewicht: 341 g
- Maße: 235 x 155 mm
- Stärke: 13 mm
- Erscheinungstermin: 9.1.2024
- Serie: Lecture Notes in Energy - Band 85
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Energy Forecasting and Control Methods for Energy Storage Systems in Distribution Networks
Klappentext
This book describes the stochastic and predictive control modelling of electrical systems that can meet the challenge of forecasting energy requirements under volatile conditions.The global electrical grid is expected to face significant energy and environmental challenges such as greenhouse emissions and rising energy consumption due to the electrification of heating and transport. Today, the distribution network includes energy sources with volatile demand behaviour, and intermittent renewable generation. This has made it increasingly important to understand low voltage demand behaviour and requirements for optimal energy management systems to increase energy savings, reduce peak loads, and reduce gas emissions.
Electrical load forecasting is a key tool for understanding and anticipating the highly stochastic behaviour of electricity demand, and for developing optimal energy management systems. Load forecasts, especially of the probabilistic variety, can support moreinformed planning and management decisions, which will be essential for future low carbon distribution networks. For storage devices, forecasts can optimise the appropriate state of control for the battery. There are limited books on load forecasts for low voltage distribution networks and even fewer demonstrations of how such forecasts can be integrated into the control of storage.
This book presents material in load forecasting, control algorithms, and energy saving and provides practical guidance for practitioners using two real life examples: residential networks and cranes at a port terminal.