Supervised and Unsupervised Statistical Data Analysis, Kartoniert / Broschiert
Supervised and Unsupervised Statistical Data Analysis
Sie können den Titel schon jetzt bestellen. Versand an Sie erfolgt gleich nach Verfügbarkeit.
- Herausgeber:
- Antonio D'Ambrosio, Mark de Rooij, Kim de Roover, Carmela Iorio, Michele La Rocca
- Verlag:
- Springer-Verlag GmbH, 11/2025
- Einband:
- Kartoniert / Broschiert
- Sprache:
- Englisch
- ISBN-13:
- 9783032030412
- Artikelnummer:
- 12361544
- Sonstiges:
- Approx. 500 p.
- Erscheinungstermin:
- 7.11.2025
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
The contributions in this book offer new insights into the theoretical and practical challenges of supervised and unsupervised learning, highlighting the remarkable breadth of contemporary statistical research while maintaining methodological rigor. Innovative approaches to statistical modeling, addressing spatial dependencies and circular data structures, are presented alongside significant advances in interpretable machine learning that reconcile statistical precision with algorithmic transparency. Particularly noteworthy is the volume's treatment of complex data structures, including novel methods for network analysis, high-dimensional clustering, temporal pattern recognition and optimization techniques. The volume interweaves methodological innovation and practical relevance, and the applications span diverse domains, including the social sciences and biomedical engineering, each demonstrating the effective translation of statistical theory into real-world impact.
The book contains peer-reviewed contributions presented at the special edition of the 15th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society, namely the International Scientific Joint Meeting of the Italian and Dutch-Flemish Classification Societies (CLADAG-VOC 2025), held in Naples, Italy, September 8--10, 2025. The conference provided fresh perspectives on the current state of research in clustering, classification and data analysis, and underpinned the value and significance of international collaboration, addressing the emerging needs of an increasingly complex data landscape and offering novel solutions to long-standing challenges in statistical data analysis.
