Samrat Pathania: A Full Axiomatic Development of High School Geometry
A Full Axiomatic Development of High School Geometry
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 58,66*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer International Publishing, 02/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031235276
- Bestellnummer: 11765814
- Umfang: 148 Seiten
- Nummer der Auflage: 24001
- Auflage: 1st ed. 2023
- Gewicht: 236 g
- Maße: 235 x 155 mm
- Stärke: 9 mm
- Erscheinungstermin: 15.2.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von A Full Axiomatic Development of High School Geometry
Klappentext
This textbook provides a full and complete axiomatic development of exactly that part of plane Euclidean geometry that forms the standard content of high school geometry. It begins with a set of points, a measure of distance between pairs of points and ten simple axioms. From there the notions of length, area and angle measure, along with congruence and similarity, are carefully defined and their properties proven as theorems. It concludes with a proof of the consistency of the axioms used and a full description of their models. It is provided in guided inquiry (inquiry-based) format with the intention that students will be active learners, proving the theorems and presenting their proofs to their class with the instructor as a mentor and a guide.The book is written for graduate and advanced undergraduate students interested in teaching secondary school mathematics, for pure math majors interested in learning about the foundations of geometry, for faculty preparing future secondary school teachers and as a reference for any professional mathematician. It is written with the hope of anchoring K-12 geometry in solid modern mathematics, thereby fortifying the teaching of secondary and tertiary geometry with a deep understanding of the subject.