Pattern Recognition, Kartoniert / Broschiert
Pattern Recognition
- 47th DAGM German Conference, DAGM GCPR 2025, Freiburg, Germany, September 23-26, 2025, Proceedings
(soweit verfügbar beim Lieferanten)
- Herausgeber:
- Margret Keuper, Francesco Locatello
- Verlag:
- Springer, 01/2026
- Einband:
- Kartoniert / Broschiert
- Sprache:
- Englisch
- ISBN-13:
- 9783032128393
- Artikelnummer:
- 12606336
- Umfang:
- 668 Seiten
- Gewicht:
- 996 g
- Maße:
- 235 x 155 mm
- Stärke:
- 36 mm
- Erscheinungstermin:
- 3.1.2026
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
.- Computer Vision Systems and Applications.
.- Box it and Track it: A Weakly Supervised Framework for Cell Tracking.
.- A Cascaded Dilated Convolution Approach for Mpox Lesion Classification.
.- HistDiST: Histopathological Diffusion-based Stain Transfer.
.- Deep Learning-Assisted Dynamic Mode Decomposition for Non-resonant Background Removal in CARS Spectroscopy.
.- γ-Quant: Towards Learnable Quantization for Low-bit Pattern Recognition.
.- EVCS: A Benchmark for Fine-Grained Electric Vehicle Charging Station Detection.
.- Video Analysis and Synthesis.
.- SegSLR: Promptable Video Segmentation for Isolated Sign Language Recognition.
.- Video Object Segmentation-aware Audio Generation.
.- MCUCoder: Adaptive Bitrate Learned Video Compression for IoT Devices.
.- VisualChef: Generating Visual Aids in Cooking via Mask Inpainting.
.- StorySync: Training-Free Subject Consistency via Region Harmonization.
.- Structured Universal Adversarial Attacks on Object Detection for Video Sequences.
.- Road Obstacle Video Segmentation.
.- Machine Learning Methods.
.- Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly Detection.
.- LADB: Latent Aligned Diffusion Bridges for Semi-Supervised Domain Translation.
.- On the Dangers of Bootstrapping Generation for Continual Learning and Beyond.
.- Combined Image Data Augmentations diminish the benefits of Adaptive Label Smoothing.
.- Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation.
.- Applications of Foundation Models.
.- Using Knowledge Graphs to harvest datasets for efficient CLIP model training.
.- Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling.
.- Investigating Structural Pruning and Recovery Techniques for Compressing Multimodal Large Language Models: An Empirical Study.
.- Assessing Foundation Models for Mold Colony Detection with Limited Training Data.
.- Common Data Properties Limit Object-Attribute Binding in CLIP.
.- subCellSAM: Zero-Shot (Sub-)Cellular Segmentation for Hit Validation in Drug Discovery.
.- Safety and Robustness.
.- synth-dacl: Does Synthetic Defect Data Enhance Segmentation Accuracy and Robustness for Real-World Bridge Inspections?.
.- FedPCE: Federated Personalized Client Embeddings for Post-training Knowledge Distillation.
.- Object Risk Estimation for Autonomous Driving Safety.
.- Rethinking Semi-supervised Segmentation Beyond Accuracy: Robustness and Reliability.
.- Detection of Synthetic Face Images: Accuracy, Robustness, Generalization.
.- 3D Perception and Reconstruction.
.- MT-Occ: Single-View 3D Occupancy Prediction via Multi-Task Distillation.
.- Hierarchical Insights: Exploiting Structural Similarities for Reliable 3D Semantic Segmentation.
.- CoProU-VO: Combining Projected Uncertainty for End-to-End Unsupervised Monocular Visual Odometry.
.- Combining Absolute and Semi-Generalized Relative Poses for Visual Localization.
.- Graph Roof Reconstruction with Synthetic Data from Misaligned Labels.
.- sshELF: Single-Shot Hierarchical Extrapolation of Latent Features for 3D Reconstruction from Sparse-Views.
.- Photogrammetry and Remote Sensing.
.- NaT-ReX: Naturalness Assessment with Transformer-Based Reliable Explainability.
.- Semantic Segmentation of Structural Damage: A Comparative Study of YOLO11 and Encoder-Decoder Networks.
.- Can Multitask Learning Enhance Model Explainability?.
.- Out-of-Distribution Detection in LiDAR Semantic Segmentation Using Epistemic Uncertainty from Hierarchical GMMs.
.- RadarSeq: A Temporal Vision Framework for User Churn Prediction via Radar Sequence Chart.