Oluwatosin Ahmed Amodu: Markov Decision Processes and Reinforcement Learning for Timely UAV-IoT Data Collection..., Gebunden
Markov Decision Processes and Reinforcement Learning for Timely UAV-IoT Data Collection Applications
(soweit verfügbar beim Lieferanten)
- Verlag:
- Springer, 10/2025
- Einband:
- Gebunden
- Sprache:
- Englisch
- ISBN-13:
- 9783031970108
- Artikelnummer:
- 12523690
- Umfang:
- 156 Seiten
- Gewicht:
- 405 g
- Maße:
- 241 x 160 mm
- Stärke:
- 15 mm
- Erscheinungstermin:
- 8.10.2025
- Hinweis
- 
                                                                                                                
 Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
This book offers a structured exploration of how Markov Decision Processes (MDPs) and Deep Reinforcement Learning (DRL) can be used to model and optimize UAV-assisted Internet of Things (IoT) networks, with a focus on minimizing the Age of Information (AoI) during data collection. Adopting a tutorial-style approach, it bridges theoretical models and practical algorithms for real-time decision-making in tasks like UAV trajectory planning, sensor transmission scheduling, and energy-efficient data gathering. Applications span precision agriculture, environmental monitoring, smart cities, and emergency response, showcasing the adaptability of DRL in UAV-based IoT systems. Designed as a foundational reference, it is ideal for researchers and engineers aiming to deepen their understanding of adaptive UAV planning across diverse IoT applications.
 
                                                