M Martinez-Ramon: Deep Learning: A Practical Introduction
Deep Learning: A Practical Introduction
Buch
- A Practical Introduction
Lieferzeit beträgt mind. 4 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 116,65*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- John Wiley & Sons Inc, 08/2024
- Einband: Gebunden
- Sprache: Englisch
- ISBN-13: 9781119861867
- Bestellnummer: 10712952
- Umfang: 416 Seiten
- Gewicht: 872 g
- Maße: 251 x 177 mm
- Stärke: 29 mm
- Erscheinungstermin: 8.8.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
An engaging and accessible introduction to deep learning perfect for students and professionalsIn Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples.
Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:
Thorough introductions to deep learning and deep learning tools
Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures
Practical discussions of recurrent neural networks and non-supervised approaches to deep learning
Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks
Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.