Lei Cheng: Bayesian Tensor Decomposition for Signal Processing and Machine Learning
Bayesian Tensor Decomposition for Signal Processing and Machine Learning
Buch
- Modeling, Tuning-Free Algorithms, and Applications
- Springer International Publishing, 02/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031224409
- Artikelnummer: 11769510
- Umfang: 196 Seiten
- Nummer der Auflage: 24001
- Auflage: 1st ed. 2023
- Gewicht: 342 g
- Maße: 235 x 155 mm
- Stärke: 11 mm
- Erscheinungstermin: 17.2.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Bayesian Tensor Decomposition for Signal Processing and Machine Learning
Klappentext
This book presents recent advances of Bayesian inference in structured tensor decompositions. It explains how Bayesian modeling and inference lead to tuning-free tensor decomposition algorithms, which achieve state-of-the-art performances in many applications, includingblind source separation;
social network mining;
image and video processing;
array signal processing; and,
wireless communications.
The book begins with an introduction to the general topics of tensors and Bayesian theories. It then discusses probabilistic models of various structured tensor decompositions and their inference algorithms, with applications tailored for each tensor decomposition presented in the corresponding chapters. The book concludes by looking to the future, and areas where this research can be further developed.
Bayesian Tensor Decomposition for Signal Processing and Machine Learning is suitable for postgraduates and researchers with interests in tensor data analytics and Bayesian methods.