Federated Learning for Future Intelligent Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Buch
- Herausgeber: Yao Sun, Chaoqun You, Gang Feng
lieferbar innerhalb 1-2 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 186,29*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Wiley, 12/2023
- Einband: Gebunden, HC gerader Rücken kaschiert
- Sprache: Englisch
- ISBN-13: 9781119913894
- Bestellnummer: 11145386
- Umfang: 320 Seiten
- Gewicht: 612 g
- Maße: 235 x 157 mm
- Stärke: 22 mm
- Erscheinungstermin: 27.12.2023
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Explore the concepts, algorithms, and applications underlying federated learningIn Federated Learning for Future Intelligent Wireless Networks, a team of distinguished researchers delivers a robust and insightful collection of resources covering the foundational concepts and algorithms powering federated learning, as well as explanations of how they can be used in wireless communication systems. The editors have included works that examine how communication resource provision affects federated learning performance, accuracy, convergence, scalability, and security and privacy.
In the book, readers will explore a wide range of topics that show how federated learning algorithms, concepts, and design and optimization issues that apply to wireless communications. Readers will also find:
* A thorough introduction to the fundamental concepts and algorithms of federated learning, including horizontal, vertical, and hybrid FL
* Comprehensive explorations of wireless communication network design and optimization for federated learning
* Practical discussions of novel federated learning algorithms and frameworks for future wireless networks
* Expansive case studies in edge intelligence, autonomous driving, IoT, MEC, blockchain, and content caching and distribution
Perfect for electrical and computer science engineers, researchers, professors, and postgraduate students with an interest in machine learning, Federated Learning for Future Intelligent Wireless Networks will also benefit regulators and institutional actors responsible for overseeing and making policy in the area of artificial intelligence.