Camillo De Lellis: Instability and Non-Uniqueness for the 2D Euler Equations, After M. Vishik
Instability and Non-Uniqueness for the 2D Euler Equations, After M. Vishik
Buch
lieferbar innerhalb 1-2 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 106,08*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Princeton University Press, 02/2024
- Einband: Kartoniert / Broschiert
- Sprache: Englisch
- ISBN-13: 9780691257532
- Bestellnummer: 11491206
- Umfang: 148 Seiten
- Gewicht: 240 g
- Maße: 234 x 155 mm
- Stärke: 11 mm
- Erscheinungstermin: 13.2.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Instability and Non-Uniqueness for the 2D Euler Equations, After M. Vishik
Klappentext
An essential companion to M. Vishik’s groundbreaking work in fluid mechanicsThe incompressible Euler equations are a system of partial differential equations introduced by Leonhard Euler more than 250 years ago to describe the motion of an inviscid incompressible fluid. These equations can be derived from the classical conservations laws of mass and momentum under some very idealized assumptions. While they look simple compared to many other equations of mathematical physics, several fundamental mathematical questions about them are still unanswered. One is under which assumptions it can be rigorously proved that they determine the evolution of the fluid once we know its initial state and the forces acting on it. This book addresses a well-known case of this question in two space dimensions. Following the pioneering ideas of M. Vishik, the authors explain in detail the optimality of a celebrated theorem of V. Yudovich from the 1960s, which states that, in the vorticity formulation, the solution is unique if the initial vorticity and the acting force are bounded. In particular, the authors show that Yudovich’s theorem cannot be generalized to the L^p setting.