Birational Geometry, Kähler-Einstein Metrics and Degenerations
Birational Geometry, Kähler-Einstein Metrics and Degenerations
Buch
- Moscow, Shanghai and Pohang, April-November 2019
- Herausgeber: Ivan Cheltsov, Jihun Park, Ludmil Katzarkov, Xiuxiong Chen
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 219,03*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Nature Switzerland, 05/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783031178610
- Bestellnummer: 11879794
- Umfang: 900 Seiten
- Nummer der Auflage: 2023
- Auflage: 2023
- Gewicht: 1334 g
- Maße: 235 x 155 mm
- Stärke: 48 mm
- Erscheinungstermin: 25.5.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Birational Geometry, Kähler-Einstein Metrics and Degenerations
Klappentext
This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and PohangThe conferences were focused on the following two related problems:
existence of Kähler Einstein metrics on Fano varieties
degenerations of Fano varieties
on which two famous conjectures were recently proved. The first is the famous Borisov Alexeev Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian YaüDonaldson Conjecture on the existence of Kähler Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kähler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide.
These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow Shanghai Pohang conferences, while the others helped to expand the research breadth of the volume the diversity of their contributions reflects the vitality of modern Algebraic Geometry.